Search results for " gene expression."

showing 10 items of 691 documents

Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite.

2019

The geographical mosaic theory of coevolution predicts that species interactions vary between locales. Depending on who leads the coevolutionary arms race, the effectivity of parasite attack or host defence strategies will explain parasite prevalence. Here, we compare behaviour and brain transcriptomes of Temnothorax longispinosus ant workers when defending their nest against an invading social parasite, the slavemaking ant Temnothorax americanus . A full-factorial design allowed us to test whether behaviour and gene expression are linked to parasite pressure on host populations or to the ecological success of parasite populations. Albeit host defences had been shown before to covary with …

0106 biological sciences0301 basic medicineGene ExpressionBiology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyHost-Parasite InteractionsNesting Behavior03 medical and health sciencesEvolutionary arms raceNestParasite hostingAnimalsSocial BehaviorCoevolutionRegulation of gene expressionBrood parasiteEcologyHost (biology)AntsBrainTemnothorax americanusArticlesbiology.organism_classification030104 developmental biologyGeneral Agricultural and Biological SciencesPhilosophical transactions of the Royal Society of London. Series B, Biological sciences
researchProduct

Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae

2017

Pyriculol was isolated from the rice blast fungus Magnaporthe oryzae and found to induce lesion formation on rice leaves. These findings suggest that it could be involved in virulence. The gene MoPKS19 was identified to encode a polyketide synthase essential for the production of the polyketide pyriculol in the rice blast fungus M. oryzae. The transcript abundance of MoPKS19 correlates with the biosynthesis rate of pyriculol in a time-dependent manner. Furthermore, gene inactivation of MoPKS19 resulted in a mutant unable to produce pyriculol, pyriculariol and their dihydro derivatives. Inactivation of a putative oxidase-encoding gene MoC19OXR1, which was found to be located in the genome cl…

0106 biological sciences0301 basic medicineMagnaportheMutantSecondary Metabolism01 natural sciencesMicrobiologyMicrobiology03 medical and health sciencesPolyketideGene Expression Regulation FungalPolyketide synthaseAxenicGenePlant DiseasesRegulation of gene expressionbiologyFungal geneticsfood and beveragesOryzabiology.organism_classificationPlant LeavesMagnaporthe030104 developmental biologyBenzaldehydesMultigene FamilyPolyketidesbiology.proteinFatty AlcoholsPolyketide SynthasesTranscription FactorsResearch Article010606 plant biology & botanyMicrobiology
researchProduct

NMD-Based Gene Regulation—A Strategy for Fitness Enhancement in Plants?

2019

Abstract Post-transcriptional RNA quality control is a vital issue for all eukaryotes to secure accurate gene expression, both on a qualitative and quantitative level. Among the different mechanisms, nonsense-mediated mRNA decay (NMD) is an essential surveillance system that triggers degradation of both aberrant and physiological transcripts. By targeting a substantial fraction of all transcripts for degradation, including many alternative splicing variants, NMD has a major impact on shaping transcriptomes. Recent progress on the transcriptome-wide profiling and physiological analyses of NMD-deficient plant mutants revealed crucial roles for NMD in gene regulation and environmental response…

0106 biological sciences0301 basic medicinePhysiologyNonsense-mediated decayMutantMRNA DecayPlant ScienceComputational biologyBiology01 natural sciencesTranscriptome03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantGene expressionPlant Physiological PhenomenaRegulation of gene expressionRNA quality controlGene Expression ProfilingAlternative splicingCell BiologyGeneral MedicinePlantsNonsense Mediated mRNA DecayAlternative Splicing030104 developmental biologyTranscriptome010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants

2018

Abstract Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG)…

0106 biological sciences0301 basic medicinePhysiologyRNA StabilityNonsense-mediated decayArabidopsisPlant ScienceBiology01 natural scienceslaw.inventionDephosphorylation03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantlawArabidopsis thalianaFeedback PhysiologicalRegulation of gene expressionArabidopsis ProteinsMechanism (biology)RNACell BiologyGeneral MedicineRNA surveillancebiology.organism_classificationNonsense Mediated mRNA DecayCell biology030104 developmental biologyRNA PlantSuppressorCarrier ProteinsRNA Helicases010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Blattella germanica displays a large arsenal of antimicrobial peptide genes

2020

Defence systems against microbial pathogens are present in most living beings. The German cockroach Blattella germanica requires these systems to adapt to unhealthy environments with abundance of pathogenic microbes, in addition to potentially control its symbiotic systems. To handle this situation, four antimicrobial gene families (defensins, termicins, drosomycins and attacins) were expanded in its genome. Remarkably, a new gene family (blattellicins) emerged recently after duplication and fast evolution of an attacin gene, which is now encoding larger proteins with the presence of a long stretch of glutamines and glutamic acids. Phylogenetic reconstruction, within Blattellinae, suggests …

0106 biological sciences0301 basic medicinePore Forming Cytotoxic ProteinsGenome InsectEvolutionary biology010603 evolutionary biology01 natural sciencesGenomeArticle03 medical and health sciencesProtein DomainsPhylogeneticsGene duplicationGene expressionGene familyAnimalsAmino Acid SequenceSymbiosisGenePhylogenyRegulation of gene expressionGeneticsGerman cockroachMultidisciplinarybiologyAntimicrobial responsesBlattellidaebiology.organism_classificationGenome evolution030104 developmental biologyGene Expression RegulationEntomology
researchProduct

Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco

2017

SPEIPMUBINRASUPDATDOCT; Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea. Here, we inv estigated the function of NtCdc48 in cryptogein signalling and induced hypersensitive-like cell death. NtCdc48 was found to accumulate in elicited cells at both th…

0106 biological sciences0301 basic medicineProgrammed cell deathPhysiologyImmunoprecipitationNitrosation[SDV]Life Sciences [q-bio]PopulationPlant ScienceBiologyBioinformatics01 natural sciencesdefence responsescryptogeinFungal Proteins03 medical and health sciencesImmune systemGene Expression Regulation PlantValosin Containing ProteinPlant CellsTobaccoRNA MessengereducationPlant ProteinsRegulation of gene expressioneducation.field_of_studyFungal protein[ SDV ] Life Sciences [q-bio]AutophagyElicitinCell biology030104 developmental biologycell deathChromatography GelCdc48 partnersNtCdc48Protein Binding010606 plant biology & botany
researchProduct

Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

2017

In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

0106 biological sciences0301 basic medicineautophagyabiotic stressHistone acetylation and deacetylationMini ReviewPlant Sciencelcsh:Plant culture01 natural sciencesEnvironmental stress03 medical and health scienceschemistry.chemical_compoundhistone deacetylationlcsh:SB1-1110Histone AcetyltransferasesRegulation of gene expressionprotein complexesbiologyAbiotic stressAutophagyHDACsCell biology030104 developmental biologyHistonechemistryAcetylationbiology.protein010606 plant biology & botanyFrontiers in Plant Science
researchProduct

2019

PIWI proteins and their guiding Piwi-interacting (pi-) RNAs direct the silencing of target nucleic acids in the animal germline and soma. Although in mammal testes fetal piRNAs are involved in extensive silencing of transposons, pachytene piRNAs have additionally been shown to act in post-transcriptional gene regulation. The bulk of pachytene piRNAs is produced from large genomic loci, named piRNA clusters. Recently, the presence of reversed pseudogenes within piRNA clusters prompted the idea that piRNAs derived from such sequences might direct regulation of their parent genes. Here, we examine primate piRNA clusters and integrated pseudogenes in a comparative approach to gain a deeper unde…

0106 biological sciencesComparative genomicsRegulation of gene expressionTransposable elementendocrine system0303 health sciencesurogenital systemPseudogenePiwi-interacting RNABiology010603 evolutionary biology01 natural sciencesGermline03 medical and health sciencesEvolutionary biologyGeneticsGene silencingGeneEcology Evolution Behavior and Systematics030304 developmental biologyGenome Biology and Evolution
researchProduct

Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

2009

46 pages, 4 tables, 6 figures, 3 additinoal files.

0106 biological sciencesMESH: Genome PlantArabidopsis thalianaGene regulatory networkArabidopsis01 natural sciencesTranscriptomeGene Expression Regulation PlantArabidopsisMESH: Gene Expression Regulation DevelopmentalCluster AnalysisGene Regulatory NetworksMESH: ArabidopsisMESH: EcosystemMESH: Models GeneticOligonucleotide Array Sequence AnalysisMESH: Gene Regulatory NetworksGenetics0303 health sciencesMESH: Stress MechanicalbiologyMESH: Genomicsfood and beveragesGene Expression Regulation DevelopmentalGenomicsPhenotypeAlgorithmsGenome PlantMESH: MutationSystems biologyGenomicsMESH: AlgorithmsComputational biologyMESH: Arabidopsis ProteinsMESH: Phenotype03 medical and health sciencesMESH: Gene Expression Profiling[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Gene Expression Regulation PlantEcosystem030304 developmental biologyModels GeneticMicroarray analysis techniquesArabidopsis ProteinsGene Expression ProfilingResearchfungiRobustness (evolution)biology.organism_classificationMESH: Cluster AnalysisGene expression profilingMutationMESH: Oligonucleotide Array Sequence AnalysisStress Mechanical010606 plant biology & botany
researchProduct

Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in gra…

2012

International audience; The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandierixV. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of my…

0106 biological sciencesNematodaPhysiology[SDV]Life Sciences [q-bio]NepovirusPlant Science01 natural sciencesXiphinema indexPlant RootsGlomeromycota03 medical and health sciencesGene Expression Regulation PlantMycorrhizaeBotanyGallAnimalsVitisMycorrhizaGlomeromycotaGlomus030304 developmental biologyPlant DiseasesPlant Proteins2. Zero hunger0303 health sciencesbiologyarbuscular mycorrhizaGrapevine fanleaf virussplit-root systembiology.organism_classificationgrapevineNematode[SDE]Environmental Sciencesbioprotectionxiphinema indexdefence gene expressionRootstock010606 plant biology & botanyResearch Paper
researchProduct